EMPIRE XPU Tutorial

Waveguide Exciter

Topics and outline

Drawing Interface:

Basic Features
Waveguide Ports
Coaxial Ports
Priority Concept
Parametric Objects

Processing Interface:

- Preprocessing
 Simulation Control
 Postprocessing
- Postprocessing
- Optimization

I M S

Step 1: Start

		New Project	Open Project	Examples	Templates	Tutorials
		General				
•	Start Empire XPU ج	Structure Type:	Standard			
		Solvers:	EM			
		Drawing Unit:	1	mm 🔹		
•	Select "New Project" Tab	Frequency				
•	Change "Drawing Unit" to mm	Stop Frequency:	20	GHz 🔻		
•	Click OK	Target Frequency:	10	GHz 💌		
		Loss Calculation				
		Dielectrics:	lossless			
		Conductors:	lossless			
-						

Project Wizard

Select File → "Save As"

3

• Create new folder (e.g. on Desktop), save file

Step 2: Create Waveguide

Step 3: Coaxial Port

Step 4: Simulation setup

- Select Icon Simulation Setup
- Set "Structure Type" to Medium Q System'
- "EM Setup": Start: 10 GHz
- Stop: 30 GHz, Target: 20 GHz
- "Boundary": Conditions: Set all to Electric
- Close window with OK

Simulation setup:

- Geometry: 1 unit in the drawing equals 1 mm, here
- Structure Type: Information about the structure for automatic meshing and end criteria
- Frequency: Determines the range of the DFT, the pulse width used is derived by maximum cell size
- Accuracy Resolution Medium (15/4): Maximum cell size determined by 15 cells per wavelength at Stop Frequency, using at least 4 cells per object or gap
- Boundary conditions:
 - electric defines infinite ground plane, Et=0, (magnetic Ht=0)
 - Absorbing N emulates open space (N should be larger in the main radiation direction)

	£	Simulatio	n Setup									
	(General	EM Set	up	The	rmal	Mesh	Bound	ary			
	(General										
		Drawing	Unit		1					mm		
		Solvers			EM							
		Structur	е Туре		Med	ium Q S	System					
		Backgro	und Mate	rial	Air							
		Simulatio	on Mode		Seq	uential I	Excitation					
,												
etup	т	hermal M	lesh Bou	undary								
						Accuracy						
		10		GHz 🔻		Energy	Decay		auto			
		30		GHz 🔻		Limit fo	r Number o	f Steps:	0		eps	
тсу		20		GHz 🔻		Field Co	nvergence	Check	1 %			
monci	96	1000			2	DGA						

AC only simulation

Simulation Setu

General

Frequency

Start Freque

Target Freg

Loss Calculatio

Dielectrics

Conductor

Simulation Setup

Step 5: Simulation

Meshing and simulation:

- The created mesh lines are displayed on the bars at the right and at the bottom in 2D Design
- The simulation domain is marked by the red lines which indicate electric condition in 2D Design
- With "Start Simulation" the structure is checked, meshed and prepared for simulation
- As soon as the "Energy Convergence" plot comes up the simulation starts, the evolution of the time signal is shown
- When the end criteria has been reached, the "State" is marked as "Finished"
- In the Simulation Tab, the log window reports on the cutoff frequency and mode used for the simulation of the waveguide port

Step 6: Results

- Switch to "2D Results tab"
- Plot Type "Voltage (Time Domain)"
- Plot Type "Scattering Parameters"
- Right click in plot area, "Configure Plot", and set Y-Axis range to -20 to 0, OK

Plot Configuration

X-Axis

Label: Range:

Unit Prefix:

Ticks (major):

Ticks (minor):

Y-Axis

Label:

Range:

Axis

Ticks (minor):

Label Fontsize:

Lege

Aut

Autom ti

Automa

Automat

Automatic

🔻 - Auto 🔻

Grid

Layout

Grid Fontsize:

Grid Style (Major):

Grid Style (Minor):

Layout Padding:

Solid

Apply

25

Σ

Voltage (

-10

-15 + 0.0

? X

5.0

7.5

10.0

12.5

Time (ns)

15.0

17.5

20.0

22.5

Step 7: Backshort

Dez-19 © IMST GmbH - All rights reserved

Step 8: Variables 1

Define Variable short for the backshort distance

- Open Component in "Backshort" group
- Double click on x-value of Point 2: Enter string "short + 2"

Step 9: Variables 2

Define parameter range for the backshort distance

- Set Type and Values
- Optionally enter a comment
- Close OK

🔳 Create Variat	ble	?	\times
Name:			
Comment:	Backshort variation		
Туре:	Stepped		•
Value:	0		
Start:	-1		
Stop:	1		
Step Value:	0.2		
	OK Cancel	Help	

- Open Variables on the left
- Move slider to verify range
- Reset short = 0

Step 10: Variables 3

Define Parameter *rod* for the Coaxial inner conductor length

- Open Group Coax
- Open Sources(1), double click on icon
- Click "Edit Settings"
- Enter rod in 'Rod length'
- Click OK
- Set New Parameter range
- Optionally enter a comment
- Close Windows (OK)
- Save the project

5	3	▼	+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + <t< th=""><th>Grou weguid nducto ax nducto 1 (Coax) ckshort nducto</th><th>ips le r) r) t <i>(active</i> r)</th><th>)</th><th></th><th>EMPIRE</th></t<>	Grou weguid nducto ax nducto 1 (Coax) ckshort nducto	ips le r) r) t <i>(active</i> r))		EMPIRE
	Geometry							
	Inner	Diameter		di=	0.6			•
	Dielectric	Diameter (>di)	dd=	2.6			•
	Outer	Diameter	(>dd)	da=	3.0			•
	Rod lengt	h (>=0)		-11	rod			•
	Geometric P	Priorities				Additio	nal len	gth of inner conductor
	Create V	ariable				?	×	<
	Name:							
- 1	Comment:	Inner o	conductor leng	gth				
	Type:	Stepp	ed					
A	Value:	2						
	Start:	1						
	Stop:	3						
	Step Value:	0.2						I
			OK		ancol			

Step 11: Optimization 1

Setting up the optimization

🛐 Empire XPU 8.0 - C:\Users\andreas.wien\Desktop\Tut-home\09 Exciter\sim\draft_026.emx * File Edit Utilities Help 2D Design **3D Design** Simulation Circuit 2D Results 3D Results 🕼 Simulation Config 📲 Host Setup 🛖 🕂 Create Optimization 🛛 👹 Cleanup V-Opt Data 77 🖳 Click Simulation tab 1. Simulation Parameter Sweep Setup Optimization #1 2. Click Optimization Setup 3. Click Create Optimization

Step 12: Optimization 2

		Source File Ed	litor	? X		
		Source File				
		Data Folder:	sub-2	-		
aa fila		Filename:	s2_2	•		
ce me pal" Window		As:	s2_2			
		ОК	Cancel	Help		
ename" and	{ Goal Term Edito	or			?	×
	Goal Definition					
al" Window	X Range:	21	- 24	1	▼ G	•
Jar Window	Normalization:	1				•
	Weight:	1				•
ency range:	Equation:	db20(s2_2)		• < •	-20	-
ge using "G"			ОК	Cance	el He	lp

Goal: from 21GHz to 24GHz the matching should be less than -20dB

Defining the source file

- Right Click in "Goal" Window – Add Source
- Enter s2_2 in "Filename" and "As", OK
- Right Click in "Goal" Window – Add Goal
- Define the frequency range: 21 – 24 in X Range using "G" as unit
- Set Equation db20(s2_2), OK

Step 13: Optimization 3

Starting the optimization

- Optionally click "Host Setup" to select remote computers for simulation (you can use multiple PC's from your network in parallel if you have multiple licenses)
- Keep localhost, if there are no further Empire Servers available
- Check Sources and Goal
- Press Start optimization

Optimization Iteration (each opt. parameter is varied +/-) here two parameters (rod and short) with 200µm

Initial Step Factor set to 2; a 400µm stepping is performed in first iteration If there is no improvement with a 400µm step, a refinement with a Decay of ½ is performed => 200µm stepping in second iteration

Step 14: Optimization Status

Step 15: Optimization Log

- Every parameter variation is computed in a new subdirectory v-opt-000xx-par-name ...
- Optimized values rod = 3 mm short = -1 mm in subdirectory:v-opt-00013-rod=3-short=-1

*** Date and Time: 14-11-2019 11:31:0: *** Optimizer: Discrete Gradient				
Goal:				
SOURCE sub-2/s2_2 as s2_2				
TERM db20(s2_2) < -20.0 from 2.1e+10	to 2.4e+10 weight 1.0 ref 1.0			
Parameter: rod 2.0 [1.0, 1.2, 1.39999999 Parameter: short -5.55111512313e-17 [-	999999999, 1.59999999999999999, 1.79999999999999998, 1. 1.0, -0.80000000000000004, -0.600000000000000009, -0.400	99999999999999998, 2, 199999999999999997, 2.3999 100000000000008, -0, .000000000000007, -5.551	99999999999999999999999999999999999999	1003, 3.0000000000000004] 9999999997, 0.59999999999999998, 0.800000000000
14-11-2019 11:31:28 : Average Deviation 14-11:2019 11:31:42 : Average Deviation 14-11:2019 11:37:51 : Average Deviation 14-11:2019 11:37:33 : Average Deviation 14-11:2019 11:37:33 : Average Deviation 14-11:2019 11:33:11 : Average Deviation 14-11:2019 11:33:43 : Average Deviation 14-11:2019 11:33:43 : Average Deviation 14-11:2019 11:33:43 : Average Deviation 14-11:2019 11:33:43 : Average Deviation 14-11:2019 11:34:33 : Average Deviation 14-11:2019 11:34:34 : Average Deviation 14-11:2019 11:34:34 : Average Deviation	16.762 for v-opt-00001-rod=2-short=-5.55112e-17 15.737 for v-opt-0002-rod=2-short=-5.55112e-17 16.7259 for v-opt-0002-rod=2-short=-6.4 16.1581 for v-opt-0000-rod=2-short=-6.4 16.1631 for v-opt-0000-rod=2-short=-6.55112e-17 16.3163 for v-opt-0000-rod=2-short=-6.55112e-17 16.363 for v-opt-0000-rod=2-short=-6.55112e-17 16.563 for v-opt-0000-rod=3-short=-0.4 16.5.708 for v-opt-0001-rod=3-short=-0.4 16.325 for v-opt-0001-rod=3-short=-0.8 10.025 for v-opt-0001-rod=3-short=-0.8 10.025 for v-opt-0001-rod=3-short=-0.8 10.025 for v-opt-0001-rod=3-short=-1			

Step 16: Optimization Results

Optimized S-Parameters

- Switch to "2D Results" tab. "Plot Type" Scattering Parameters
- Sort list: 2x Left Click on "Port". Click & Drag all s2_2 curves to select
- Right click on List, "Show only & Autocolor", Click Autoscale
- Switch to Mask Tab, right click Add Mask, edit values

Step 17: Optimized Structure

